
RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

RPKI Over BitTorrent

Rob Austein <sra@hactrn.net>
Randy Bush <randy@psg.com>

Michael Elkins <Michael.Elkins@sparta.com>
Leif Johansson <leifj@sunet.se>

. . . and a lot of help from our friends

IEPG
Paris

25 March 2012



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

“RPKI Over What?!? You’re Kidding, Right?”

I No, we’re serious about investigating this.
I But this is a report on an experiment in progress, not

a proposal to change the SIDR protocol suite.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

The Problem We’re Trying To Solve

I The RPKI uses rsync as a form of pull-based
flooding.

I How efficient this is depends heavily on how the
publication repositories are organized.

I In an efficiently organized repository, filesystem
hierarchy follows X.509 certificate hierarchy, so that
one can pick up significant subtrees with a single
rsync connection.

I To date, the RIRs have chosen to deploy flat
hierarchies where there is no relationship at all
between filesystem hierarchy within the repository
and certificate hierarchy.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Simplest Retrieval Topology: Direct Rsync

RPKI Repositories

Relying Parties Relying PartiesRelying PartiesRelying Parties

RPKI Repositories RPKI Repositories RPKI Repositories

I Protocols: Rsync.
I Every relying party talks to every repository.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Direct Rsync With Flat Repositories Is Nasty

I The combination of flat repositories and direct rsync
means that each relying party is making thousands
of connections every hour, just to stay in synch.

I This is not pretty for the relying party.
I Doesn’t look so nice for the operators of these big

flat repositories either.
I And it’s avoidable. . . but the repository operators

have to choose to avoid it.
I There are load balancing tricks repository operators

can use to spread load here, just as with HTTP and
DNS. They may help. We may have to use them in
any case.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

What Can Relying Parties Do About This?

I Relying parties can (and do) maintain local caches of
previously retrieved objects to help ride out failures to
connect to repositories.

I Relying parties can reduce load with more complex
retrieval schemes.

I We’ve been pushing a hierarchical retrieval model, in
which a relatively small pool of gatherers feed a
much larger number of relying parties.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Hierarchical Rsync Topology

RPKI Repositories

IAD gathererDFW gatherer SEA gatherer

RPKI Repositories RPKI RepositoriesRPKI Repositories

Relying Parties Relying PartiesRelying Parties Relying Parties

I Protocols: Rsync.
I Every gatherer talks to every repository.
I Every relying party talks to at least one gatherer,

probably with at least one more gatherer configured
as a hot spare, perhaps with other links.

I Mesh can be arbitrarily rich, problem is configuring it.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

What About Other Protocols?

I Choosing a different pull-based protocol (HTTP, FTP)
wouldn’t solve the flat repository problem.

I Conventional pull-based protocols like rsync, HTTP,
and FTP aren’t really designed for flooding, although
they can be made to work.

I There may, however, be an opportunity to take
advantage of knowing that our goal is flooding.

I Perhaps we should investigate something that was
designed as a flooding protocol?



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Flooding Protocols

I NNTP could work, but people tend to run screaming
from the room when it’s mentioned, it requires a lot of
care and feeding, and delay between publication and
receipt of data by relying party might be a
showstopper.

I Could invent yet another protocol, would rather not.
I So how about BitTorrent?



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Experiment Goals

1. Use BitTorrent to build a self-organizing flooding
network to distribute unauthenticated RPKI data.

2. See if the silly thing works at all.

3. Study and measure behavior to find out whether this
is useful.

Notes:
I Relying parties still perform their own RPKI

validation, we’re just separating that out from RPKI
data collection.

I We’re really only at stage #2 now, and have only just
started stage #3.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

BitTorrent Retrieval Topology
RPKI Repositories

IAD gatherer DFW gathererSEA gatherer

RPKI Repositories RPKI Repositories RPKI Repositories

Coordination server(s)BitTorrent

Relying Parties Relying Parties Relying Parties Relying Parties

I Protocols: Rsync, BitTorrent, SFTP, HTTPS.
I Every gatherer talks to every repository.
I Every gatherer publishes a torrent.
I Every relying party gets one or more torrents

from. . . somewhere.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Translating URIs To Filenames

I Somebody asked in Taipei: “How do we know the
original publication URI of an object once we’re not
retrieving it directly?”

I Tools like GNU wget solved this ages ago: map URI
rsync://example.org/foo/bar.cer to local
filename example.org/foo/bar.cer.

I rcynic already does this.
I We already do this for hierarchical rsync.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Creating A Torrent

1. Gatherer runs rcynic with rsync enabled, does
normal RPKI tree walk. One output is the
unauthenticated/ directory tree, containing
exactly the files we want to redistribute.

2. Gatherer puts copy of unauthenticated/ tree
where BitTorrent engine can find it.

3. Gatherer constructs a .torrent file describing the
unauthenticated/ tree and listing the
coordination server’s BitTorrent tracker.

4. Gatherer constructs a “manifest” (not to be confused
with an RPKI manifest object), listing the name of
every file in unauthenticated/ and a SHA-256
hash of each file’s content.

5. Gatherer packages .torrent file and manifest
together as a .zip file, and uploads that to
coordination server via SFTP.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Fetching A Torrent

1. Relying party polls coordination server for updated
.zip file via HTTPS, using HTTP Last-Modified
header to determine whether the .zip file has
changed.

2. Upon receiving new .zip file, relying party extracts
the .torrent file and hands that to BitTorrent
engine.

3. When BitTorrent engine signals that it has finished
receiving the new torrent, relying party checks
received files against manifest from the .zip file to
verify that relying party received what gatherer sent.

4. If everything looks good, relying party runs rcynic
with rsync fetching disabled, using the data retrieved
via BitTorrent as input to be authenticated.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Other Details

I New .zip files are installed with an atomic rename
operation.

I Current prototype has only one coordination server,
but design should scale up to maybe a dozen,
perhaps just making every gatherer also be a
coordination server. Above that, we’re getting into
territory where we’d want to hire experts.

I Each gatherer also mirrors the other gatherers’
torrents, so that there will be multiple sources for
each torrent. Gatherers are configured for unlimited
seeding.

I We’re not currently using web seeding, because we
haven’t needed it yet, but in theory it’s simple:
gatherer would just make files available via web
server too, and include URL when constructing
.torrent file.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Like “Broadcatching,” But Less Filling

I Overall technique here is similar to “broadcatching,”
but without the RSS intermediary.

I Main feature RSS would bring would be ability to
discover new feeds automatically. We’re not
convinced that’d be a feature, do you really want your
relying party software fetching from gatherers it met
in an Internet chat room?

I RSS would also complicate installation of new .zip
files, which is currently dead simple.

I So we left RSS out, because it didn’t add anything
we needed. If it turns out we were wrong. . . we’ll add
it back.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Software Required: Relying Parties

I RPKI validator (rcynic)
I BitTorrent engine (transmission-daemon)
I Control scripts, HTTPS client (Python 2.7)



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Software Required: Data Gatherers

I RPKI gatherer and validator (rcynic, rsync)
I BitTorrent engine (transmission-daemon)
I SSH/SFTP upload client (paramiko)
I Torrent construction tool (mktorrent)
I Control scripts (Python 2.7)



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Software Required: Coordination Servers

I HTTPS download server (Apache)
I SSH/SFTP upload server (OpenSSH)
I BitTorrent “tracker” server (opentracker)



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Tradeoffs: Caveats

I Most of the following applies equally to hierarchical
rsync and to BitTorrent.

I Most of the differences between hierarchical rsync
and BitTorrent are a matter of degree rather than of
kind.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Tradeoffs: Pros

I Fast, cheap way for relying party to receive data.
I Reduce load on repositories, perhaps dramatically.
I Makes view from multiple gatherers available to

relying party, which might be useful.
I This is still research, so I’m allowed to say that.

I BitTorrent probably scales better than hierarchical
rsync—but that’s theory, not measurement.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Tradeoffs: Cons

I Relying party is at mercy of gatherers, unless relying
party has strategy for falling back to direct fetch.

I Falling back to direct fetch could have its own issues:
Provider has bad day, flooding network decays,
threshold is crossed. Wham! A bunch of relying
parties all fall back to direct fetch at once—which
probably makes things worse for provider without
fixing anything for the relying parties. Ouch.

I So falling back to direct rsync must be done very
carefully, if at all, and it’s not immediately obvious
how a relying party would decide in which cases
falling back is the right thing to do.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Tradeoffs: Cons

I Longer delay between original publication and
receipt of data by relying party. Nowhere near as bad
as NNTP, but longer than direct rsync.

I More moving parts means more things that can
break.

I Some people have issues with BitTorrent because of
other things for which it’s been used in the past; the
person who controls your firewall may be one of
those people.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Things We’re Measuring, Or Should Be

1. How long does it take relying parties to download?

2. How long does it take relying parties to validate?

3. How fresh are the data relying parties see?

Notes:
I We’re currently tracking #1 and #2.
I We don’t have a good handle on #3 yet.
I We don’t yet have all the measurements to which

we’d need for meaningful comparisons.
I This is proof-of-concept, we don’t have a serious

testbed running yet.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Time To Download

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

06Mar 08Mar 10Mar 12Mar 14Mar 16Mar 18Mar 20Mar 22Mar 24Mar

S
e
co

n
d
s 

to
 d

o
w

n
lo

a
d

Source: DFW
Source: IAD
Source: SEA

I Destination is home desk machine, so we suspect
much of the noise is just consumer-grade network.

I Outage 17th-21st (fat fingers) shows that recovery
after days offline is not significantly different.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Time To Validate

 20

 40

 60

 80

 100

 120

 140

 160

06Mar 08Mar 10Mar 12Mar 14Mar 16Mar 18Mar 20Mar 22Mar 24Mar

S
e
co

n
d
s 

to
 v

a
lid

a
te

Source: DFW
Source: IAD
Source: SEA

I Spikes are almost certainly environmental: most of
them are at 03:00 local time, when an unrelated
disk-intensive cron job is running.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Future Work

I Measure data freshness, compare with direct fetch
and hierarchical rsync.

I Scale up a bit and invite friends in to play with us.
I Investigate properties of BitTorrent as an alternate

mechanism for primary publication by authoritative
sources.



RPKI Over
BitTorrent

http://rpki.net/

Introduction
The Problem We’re Trying
To Solve

Experiment Goals

Architecture And
Implementation
Operation

Odds’n’Ends

Software

Tradeoffs
Pros

Cons

Performance
Graphs
Download

Validate

Conclusion

Questions?


	Introduction
	The Problem We're Trying To Solve
	Experiment Goals

	Architecture And Implementation
	Operation
	Odds'n'Ends
	Software

	Tradeoffs
	Pros
	Cons

	Performance Graphs
	Download
	Validate

	Conclusion

