RDL: A programmatic approach
to generating router configurations

Per Gregers Bilse B (=

Benno Overeinder

RDL: The background

ENGRIT: Extensible Next Generation Routing Information Toolset
Improve Internet routing security and stability

Multi-pronged approach, RDL is one aspect

Other aspects will focus on authentication, etc

NLnetLabs has done much work with DNS

RDL: The rationale

Global turnover $dozens of millions per hour
Even small problems can be very costly
Router configuration is inherently low level
_arge number of only moderately related detalil
_imited or no verification tools

_Imited scope for inter-ISP routing management

RDL: The idea

A high level Routing Documentation Language
Dual purpose:
1) Architecture independent generation of BGP config:

- RDL->Cisco, RDL->Juniper, RDL->BIRD
- C->68k, C->x86_64, C->ARM

2) Description and publication of routing policies:

- Enable automated verification and proofing
- Improve exchange of information between peers

RDL: Not RPSL NG NG

 RDL intended to reuse parts of RPSL.:

- Some objects
- Publication/repository means, where feasible

* But, more importantly:

- RDL to describe BGP topology
- RDL to cover both IBGP and eBGP peerings
- RDL to fully qualify and identify routing policies

RDL: What Is a policy?

Much confusion between Policy and Enforcement
Action

A policy is Thieves will be prosecuted
An enforcement action is Arrest Nosey Parker

Existing tools and approaches focus on enforcement
actions

Quickly degenerate into route filter mechanics

RDL: Policies in 3D

» Arouting policy as seen by RDL has three dimensions
to it:

- Where it applies: topological location

- When it applies: NLRI attributes
- What to do: filtering and attribute manipulation

* Think of it as similar to a piece of legislation, eg speed
limits: Where, When, What

* These three aspects jointly describe a given policy in
Its entirety

RDL: A policy example

Policy: My AS will not announce bogons
RDL's 3D approach:

- Where: all peerings with foreign ASs
- When: prefix is in list of bogons
- What: block it

RDL's BGP topology description is the key to
specifying the Where of a policy

the Where Is statically analysed and applied when
generating configurations

The When and the What are done by the routers

RDL: The language

» Designed specifically for the purpose of
describing BGP topologies simply and
Intuitively

* Free form curly brace, recursive, and
concatenative syntax, allowing quick and easy
specification of objects and their location

* Borrows inadvertently and disrespectfully from
several unusual languages

* Fully dynamically typed and declaration free

RDL: BGP topology

RDL describes BGP topology by way of three
objects:

- Zones — may contain other zones, and routers
- Routers — may contain one or more eBGP peers

- Peers
Structure similar to file system directories

Eac
Attri

N object has a number of attributes

outes may be inherited from lexical scope

RDL: Topology example

hibernia = new(zone) . {
asn = 5580;
EU = new(zone) . {
NL = new(zone) . {
amsl = new(router) . {
address = 134.222.1.1;

ripe = new(peer) . { 1.2.3.4, 3333 };

}i
}i
}i
US = new(zone) . { };
APAC = new(zone) . { ... };

}i

RDL: What's In a zone

e Zones are containers for similar policies

often significant geographical correlation

should be chosen to reflect the reality of your network, not
the other way around (your network is the ground, the zone
map is the map)

you decide what your zone map should be, it is there to help
you

again: RDL is all about BGP topology
the zone map identifies reference points for policies

RDL: Policy example

» Policy descriptions follow the topology format

nobogons = new(policy) . {
where = export peer.asn != peer.remote.asn;
when = nlri.prefix & bogons;
what = reject;
}i
bogons = { 0.0.0.0/8"+, 10.0.0.0/8"+, 100.64.0.0/10"+, ... };

* Policy syntax is experimental/undecided
» Probably a good idea to stick to general syntax of RDL

RDL: Unusual Example |

hibernia = new(zone) . {
asn = 5580;
RR1 = new(router) . { 134.222.12.1, RR };
EU = new(zone) . {

ibgp = { RR1l, localmesh };

NL = new(zone) . {
amsl = new(router) . { 134.222.1.1 } . { ... };
}i
}i
US = new(zone) . { ibgp = { RR1l, localmesh }; ... };

}i

RDL: Unusual Example Il

* Policy: de-prioritise all EU routes in US

e RDL to the rescue:

EUexport = new(policy) . {
where = export peer.zone <= EU && peer.remote.zone <= US;
when = ;

what = local-preference = 90;

 Because RR1 is a route reflector it is transparent

RDL: Nirvana

RDL is all about not configuring routers, but
programming the AS.

ENGRIT + admin: benno@ninetlabs.nl

RDL: pgbh@bgpinnovations.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

