
Quest for missing keytags
Roy Arends | DNS-OARC | 1 April 2016

 | 2

What is a DNSKEY Key Tag

A.  a 16 bit value in the DNSKEY RDATA

B.  a physical tag that you’d hang on your key ring

C.  a 16 bit value in the DS and RRSIG RDATA

D.  a special variation of the game of tag.

Pubquiz question:

 | 3

Why did I look into this?

2010, first root KSK published,
2015, I started working on my testbed

 | 4

Why did I look into this?

2010
2015

 | 5

Why did I look into this?

2010
2015

I wanted to use those as keytags for my testbed.

You can’t simply assign a keytag to a dnskey.

RFC4034:

“the algorithm for calculating the Key Tag is almost but not completely
identical to the familiar ones-complement checksum used in many
other Internet protocols.”

 | 6

Simple loop

while true
 do dnssec-keygen –a RSASHA256 –f KSK –b 2048 .

done

 | 7

Simple loop

while true
 do dnssec-keygen –a RSASHA256 –f KSK –b 2048 .

done

This only generated about 16K keys

I was expecting 64K keys

keytags 02010 and 02015 were absent

 | 8

Simple loop

while true
 do dnssec-keygen –a RSASHA256 –f KSK –b 2048 .

done

First clue by Duane Wessels:

dnssec-keygen won't generate a new key if:
•  the new key tag conflicts with an existing key tag + revoke bit
•  the new key tag + revoke bit conflicts with an existing key tag

Nice! Well observed.

 | 9

Less Simple loop

while true
 do dnssec-keygen –a RSASHA256 –f KSK –b 2048 .\
 >> taglist
 rm K\.+008*;

done

This simply removes keys after they’re created, but adds the tag to a
list.

 | 10

Less Simple loop

while true
 do dnssec-keygen –a RSASHA256 –f KSK –b 2048 .\
 >> taglist
 rm K\.+008*;

done

This simply removes keys after they’re created, but adds the tag to a
list.

sort –u taglist | wc –l
16387

 | 11

Less Simple loop

while true
 do dnssec-keygen –a RSASHA256 –f KSK –b 2048 .\
 >> taglist
 rm K\.+008*;

done

This simply removes keys after they’re created, but adds the tag to a
list.

sort –u taglist | wc –l
16387

Wait, what? Not 16384?

 | 12

It’s the tool, try a different one.

while true
 do ldns-keygen –a RSASHA256 –k –b 2048 .

done

Nice and simple. No undocumented features.

Allows for foot shooting.

 | 13

It’s the tool, try a different one.

while true
 do ldns-keygen –a RSASHA256 –k –b 2048 .

done

Nice and simple. No undocumented features.

ls K.*private | wc –l
16385

 | 14

It’s the tool, try a different one.

while true
 do ldns-keygen –a RSASHA256 –k –b 2048 .

done

Nice and simple. No undocumented features.

ls K.*private | wc –l
16385

Still, not high enough.

 | 15

Meanwhile, via Twitter

 | 16

Meanwhile, via Twitter

 | 17

So, it could be the library

DNSSEC-Keygen and ldns-keygen use OpenSSL

pdnssec uses mbedTLS

Is this a bug in OpenSSL?

 | 18

So, it could be the library

DNSSEC-Keygen and ldns-keygen use OpenSSL

pdnssec uses mbedTLS

Is this a bug in OpenSSL?

“KEYSTARVE” [goes and registers name]

 | 19

But…. On DNS-Operations

Peter van Dijk:

I	now	have	~130k	(different!)	keys,	with	32201	unique	key	tags.	This	is	
almost	twice	as	much	as	Roy	had	but	it	looks	like	it	might	top	off	around	
32k.

 | 20

But…. On DNS-Operations

Peter van Dijk:

I	now	have	~130k	(different!)	keys,	with	32201	unique	key	tags.	This	is	
almost	twice	as	much	as	Roy	had	but	it	looks	like	it	might	top	off	around	
32k.

 | 21

Now what…

Three different tools

Two different libraries

Three issues:

1)  Not enough keytags (expected 64K, got less)
2)  Off by a few keytags (16387, 16385, 32769)
3)  One library produces 50% of the other library

 | 22

Is it the keytag function?

The keytag function is very similar to a radix minus one complement
function. Very similar to the Internet Header Checksum.

So, generate 2048 random bits in pairs of 2 byte words and do an
Internet Header Checksum over that.

while true
 do jot -r 128 0 65535 | awk \
 '{s+=$1} END {print (s + int(s/65536))%65535}’ \
 >>test

done

sort –u test | wc –l
65536

 | 23

It is not the keytag function

The keytag function is very similar to a radix minus one complement
function. Very similar to the Internet Header Checksum.

So, generate 2048 random bits in pairs of 2 byte words and do an
Internet Header Checksum over that.

•  It is not the keytag function

 | 24

It is not the keytag function

The keytag function is very similar to a radix minus one complement
function. Very similar to the Internet Header Checksum.

So, generate 2048 random bits in pairs of 2 byte words and do an
Internet Header Checksum over that.

•  It is not the keytag function
•  It is not the library

 | 25

It is not the keytag function

The keytag function is very similar to a radix minus one complement
function. Very similar to the Internet Header Checksum.

So, generate 2048 random bits in pairs of 2 byte words and do an
Internet Header Checksum over that.

•  It is not the keytag function
•  It is not the library
•  It is not the tools

 | 26

It is not the keytag function

The keytag function is very similar to a radix minus one complement
function. Very similar to the Internet Header Checksum.

So, generate 2048 random bits in pairs of 2 byte words and do an
Internet Header Checksum over that.

•  It is not the keytag function
•  It is not the library
•  It is not the tools

(and hopefully not the user)

 | 27

?

 | 28

Florian Maury and Jérôme Plût

The Internet Header Checksum is equivalent to

addition modulo 65535

 | 29

Florian Maury and Jérôme Plût

The Internet Header Checksum is equivalent to

addition modulo 65535

Assuming a 32 bit number ($num) this means:

($num AND 65535) + ($num >> 16)

is equivalent to

$num % 65535

 | 30

Florian Maury and Jérôme Plût

$num % 65535

In our case, $num contains the RDATA of the DNSKEY.

 For all the keys generated, the RDATA part contains a constant:

(RDLENGTH,PROTOCOL,ALGORITHM, EXPONENT)

And a variable part:

The RSA modulus, which consist of two prime factors P and Q

 | 31

Florian Maury and Jérôme Plût

Therefore, we have

$num % 65535

Is equivalent to:

(constant + P*Q) % 65535

Is equivalent to:

(constant % 65535) + ((P*Q) % 65535)

 | 32

Florian Maury and Jérôme Plût

Ignoring the constant part we have:

(P*Q) % 65535

We know that P and Q are very large primes.

65535 has factors: 3, 5, 17, 257

Since (P, Q, 3, 5, 17 and 257)are co-prime,

P, Q can’t be divided by 3, 5, 17 and 257

and

(P*Q) % 3, 5, 17 or 257 will never be 0

 | 33

Florian Maury and Jérôme Plût

(P*Q) % 3, 5, 17 or 257 will never be 0

(P*Q) % 3 has 2 solutions (not 3)
(P*Q) % 5 has 4 solutions (not 5)
(P*Q) % 17 has 16 solutions (not 17) and
(P*Q) % 257 has 256 solutions (not 257)

So, (P*Q) % 65535 has 2*4*16*256 solutions

 | 34

Florian Maury and Jérôme Plût

(P*Q) % 3, 5, 17 or 257 will never be 0

(P*Q) % 3 has 2 solutions (not 3)
(P*Q) % 5 has 4 solutions (not 5)
(P*Q) % 17 has 16 solutions (not 17) and
(P*Q) % 257 has 256 solutions (not 257)

So, (P*Q) % 65535 has 2*4*16*256 solutions, or

32768 different keytags

 | 35

Hoorah!

Three issues, one solved:

1)  SOLVED: Not enough keytags (expected 64K, got less)
2)  Off by a few keytags (16387, 16385, 32769)
3)  One library produces 50% of the other library

 | 36

Off by a few

Very similar is not exactly the same

The last part of the key-tag function in RFC4034 reads as follows:

ac += (ac >> 16) & 0xFFFF;
return ac & 0xFFFF;

If the previous line result in a carry (value > 65535), the latter line
ignores it.

Hence, some off by a few keytags are a result of that.

 | 37

Hoorah!

Three issues, two solved:

1)  SOLVED: Not enough keytags (expected 64K, got less)
2)  SOLVED: Off by a few keytags (16387, 16385, 32769)
3)  One library produces 50% of the other library

 | 38

Half the keyspace

Peter, using mbedTLS was able to produce twice as many keytags.

OpenSSL only generates safe primes:

P = 2 * P` + 1 where P` is also prime.

That implies that P mod 3 is never 1 (and thus always 2)

So: P*Q=M

(P mod 3) * (Q mod 3) = M mod 3
2 * 2 = 4 mod 3

M mod 3 is 1. Always

 | 39

Half the keyspace

(P*Q) % 3, 5, 17 or 257 will never be 0

(P*Q) % 3 has 2 solutions (not 3)
(P*Q) % 5 has 4 solutions (not 5)
(P*Q) % 17 has 16 solutions (not 17) and
(P*Q) % 257 has 256 solutions (not 257)

So, (P*Q) % 65535 has 2*4*16*256 solutions, or

32768 different keytags

 | 40

Half the keyspace

(P*Q) % 3, 5, 17 or 257 will never be 0
(P*Q) % 3 will always be 1
(P*Q) % 3 has 1 solution (not 3)
(P*Q) % 5 has 4 solutions (not 5)
(P*Q) % 17 has 16 solutions (not 17) and
(P*Q) % 257 has 256 solutions (not 257)

So, (P*Q) % 65535 has 1*4*16*256 solutions, or

32768 different keytags
16384

 | 41

Hoorah!

Three issues, two solved:

1)  SOLVED: Not enough keytags (expected 64K, got less)
2)  SOLVED: Off by a few keytags (16387, 16385, 32769)
3)  SOLVED: One library produces 50% of the other library

 | 42

Thanks to

Warren Kumari
Ben Laurie
Florian Maury
Jérôme Plût
Jean-René Reinhard
Peter van Dijk
Bert Hubert
David Conrad

And all who have participated in the discussions on dns-operations

 | 43

Questions?

