
Performance Evaluation of
PDM Implementation using

eBPF in TC versus Traditional
Kernel Methods

Amogh Umesh
Chinmaya Sharma IEPG, IETF 119 @ Brisbane AU

Overview

● eBPF Concepts
● Extension header (PDM) implementation in eBPF
● Performance analysis of the eBPF implementation and

kernel implementation of PDM

2

Why eBPF?

● Why eBPF over a kernel
implementation?
○ Quicker development

times and lesser
maintenance

○ More robust
○ Better portability
○ BPF verifier ensures

safer implementation
○ Accuracy of timestamp

captured

3

● Why eBPF over raw sockets?
○ Adding extension header

made easier by just
making space in fully
crafted packet

○ Existing userspace
applications need not
be modified

tc-BPF

● Subset of eBPF programs attached at qdisc level
● Can be attached to both ingress and egress compared to

only ingress in XDP
● Better packet mangling capability
● Executed after sk_buff is created
● Not good for complete packet rewrites

4

Implementation of PDM using tc-BPF

● PDM - RFC8250 is a destination options header used for
measuring packet processing and network delays

● Using tc-BPF, so that we can attach to both ingress and
egress of a interface

● Using bpf helpers for packet mangling
● eBPF maps to store the 5-tuple state

5

https://datatracker.ietf.org/doc/rfc8250/

Benchmarking against Kernel Implementation of PDM

● CPU Cycles
● Network Throughput
● Packet Processing Latency

6

CPU Cycles

7

CPU Usage(cycles) Mean Median St. Dev.

eBPF Egress 8.60e10 cyc. 8.54e10 cyc. 9.08e9 cyc.

eBPF Ingress 1.53e10 cyc. 1.57e10 cyc. 8.71e9 cyc.

PDM Kernel 2.29e9 cyc. 2.13e9 cyc. 6.49e8 cyc.

Network Throughput

8

Network Throughput Mean Median St. Dev

Without PDM 18.80 Gbps 18.58 Gbps 2.19 Gbps

PDM Kernel
Implementation

18.52 Gbps 18.33 Gbps 2.21 Gbps

eBPF
Implementation

18.03 Gbps 17.22 Gbps 2.51 Gbps

Packet Processing Latency (Per Packet)

9

Packet Processing Latency Mean Median St. Dev.

PDM Kernel Implementation 0.707 µs 0.641 µs 0.414 µs

With eBPF Egress 5.808 µs 6.142 µs 0.986 µs

Without eBPF Egress 4.528 µs 4.668 µs 0.785 µs

With eBPF Ingress 3.634 µs 3.977 µs 0.906 µs

Without eBPF Ingress 3.082 µs 3.321 µs 1.246 µs

eBPF Egress Mean Packet Processing Latency - (5.808 - 4.528) µs = 1.28 µs
eBPF Ingress Mean Packet Processing Latency - (3.634 - 3.082) µs = 0.552 µs

Future Work

● Optimization of the eBPF program to find out the limits
of how well an eBPF based extension header insertion
program would work

● Performance Analysis of the eBPF program in high
performance computing environments

● Implementation and analysis of other extension headers in
eBPF

10

References

ebpf.io

RFC8250

tc-BPF

PDM-in-eBPF-draft

11

https://ebpf.io/
https://www.rfc-editor.org/rfc/rfc8250
https://liuhangbin.netlify.app/post/ebpf-and-xdp/#:~:text=On%20a%20high%2Dlevel%20there,the%20XDP%20and%20tc%20hooks.
https://datatracker.ietf.org/doc/draft-elkins-ebpf-pdm-ebpf/

