nomineł

Fun with IPv4 Heatmaps

Roy Arends
Nominet UK

Open Resolver Addresses
 Mapped in Hilbert Order
 Colored by /24 saturation

code: Duane Wessels
data: John Kristoff

More than 16,000,000 open resolvers during a sweep of the IPv4 address space.

More than 16,000,000 open resolvers during a sweep of the IPv4 address space.

detail of 80.0.0.0/4
One /24 network per pixel, colored by saturation.

BGP Routeviews

BGP Routeviews

RIR whois

Open Resolvers

Census

Inspired by XKCD

Inspired by XKCD

Examples of Heatmaps

Ed Parsons "the Cathedral and the GPS" footprints of google's KML/GeoRSS database

Eyetools heatmaps
 Where do viewers look and click

GeoIQ
 Heatmap layer for Google maps

IPv4 Heatmap in Hilbert Order.

Hilbert curves, order 1 to 6 Direction changes with every order

$$
\begin{array}{rrrr}
1 & 2 & 15 & 16 \\
4 & 3 & 14 & 13 \\
& & & \\
5 & 8 & 9 & 12 \\
6 & 7 & 10 & 11
\end{array}
$$

16 points on a $2^{\text {nd }}$ order hilbert curve

Using Hilbert Curves:
Consecutive netblocks can be grouped together.

Using Hilbert Curves:

Consecutive netblocks can be grouped together.

However
In networking, only those consecutive netblocks that share the same prefix need to be grouped together.

Using Hilbert Curves:

Consecutive netblocks can be grouped together.

However
In networking, only those consecutive netblocks that share the same prefix need to be grouped together.

$$
127 / 8+128 / 8!=127 / 7
$$

Using Morton Curves:

consecutive netblocks that share the prefix can be grouped as one netblock.

Which is tailored to our needs.

Morton curves, order 1 to 4 Direction is the same with every order

$$
\begin{array}{rrrr}
1 & 2 & 5 & 6 \\
3 & 4 & 7 & 8 \\
& & & \\
9 & 10 & 13 & 14 \\
11 & 12 & 15 & 16
\end{array}
$$

16 points on $2^{\text {nd }}$ order Morton curve

IPv4 Heatmap in Hilbert Order.

-	DEC Apple -		
$\cdots \mathrm{GE}$ ¢ Am	MIT---misa	ARIN-	\cdots
Leeos IBMATert xerex	chate -mwemisa	ARIN	
mass $=$ HP	DISA $=$ mimam		
	-mome	ARIN vonlocesta	
- werit PSI	\cdots		umalogatea APNIC
	Usps Sita APNIC	Unallocated	APNIC APNIC
W-mm	APNTC PRPE ARIN		APNIC AnN
Various R	Registries	--miPEMy	ARIN RIPE
		RIPE - ARIN	APNIC US-DOD
		LACNIC	Arw mipe APNIC
		APNIC	APNIC ${ }^{\text {Wex }}$
Various Registries	Unallocated	Multicast	Reserved
"			
mmalestes	LACNIC Howl -		

IPv4 Heatmap in Morton Order.

Hilbert

$\underset{48.0 .0 .0 / 8}{ } \operatorname{Prul}^{2}$	$\underset{49.0 .0 .0 / 8}{ } \text { Unall }^{2}$	E.I. duPont de Nemours and Co., Inc. 52.0.0.0/8	$\text { Cap } \underset{53.0 .0 .0 / 8}{\text { Debis CCS }}$
$\underset{50.0 .0 .0 / 8}{ }$ Unall 5	Deparment of Social Security of UK 51.0.0.0/8	Merck and Co., Inc. 54.0.0.0/8	$\text { DOD } \underset{55.0,0.0 / 8}{\operatorname{NI}}$
$\checkmark \underbrace{}_{56,0.0 .0 / 8} D^{\infty}$	- $\underset{57.0 .0 .0 / 8}{\sim} \overbrace{1}^{\sim}$		

Morton

Detail of $48 / 4$

Hilbert
Morton

Detail of $48 / 4$

-	DEC Apple -		
$\cdots \mathrm{GE}$ ¢ Am	MIT---misa	ARIN-	\cdots
Leeos IBMATert xerex	chate -mwemisa	ARIN	
mass $=$ HP	DISA $=$ mimam		
	-mome	ARIN vonlocesta	
- werit PSI	\cdots		umalogatea APNIC
	Usps Sita APNIC	Unallocated	APNIC APNIC
W-mm	APNTC PRPE ARIN		APNIC AnN
Various R	Registries	--miPEMy	ARIN RIPE
		RIPE - ARIN	APNIC US-DOD
		LACNIC	Arw mipe APNIC
		APNIC	APNIC ${ }^{\text {Wex }}$
Various Registries	Unallocated	Multicast	Reserved
"			
mmalestes	LACNIC Howl -		

IPv4 Heatmap in Morton Order.

-merem	DECC Apple			
	MIT --- DISA	ARIN -		
Leeos IBMATert xerex	chate -mmemisa	ARIN		
mens $=$ HP	disa $=$ mam ${ }^{\text {disa }}$			
	-mom	ARIN vomlea		
- werit PSI	\cdots		Unallagreal A	
	Usps Sita APNIC	Unallocated	APVIC	
\cdots	APNTC Prperarin			
Various R		$\begin{aligned} & \text { RIPE Mmys } \\ & \text { RTE } \\ & \text { IACNIC } \\ & \text { APNIC } \end{aligned}$	ARIN RIPE	
		APNIC US-DOD		
		Arw mipe APNIC		
		APNIC ${ }^{\text {clime }}$		
Various Registries	Unallocated		Multicast	Reserved
	trallocoted -imerenc			
manlegested	LACNIC Hear -m			

IPv4 Heatmap in Morton Order.

 Notice the very red spot.

This is a /16 network

These curves work in three dimensions

3 D IFw' Heatmap ' Nominet LK

3D IFw4 Heatmap, 'Nominet UK

Color map: GOEI viewnade: total, travel transparency: 0.50 pointsive: 2.7 netblock: 10.0 .0 .018 Threshold: 64, 255
Ypos: 12
Ypos:315

3D IFw4 Heatmap ; Nominet LIK

Color map: GDEl
viewmode: totol, travel
transparency : 0.23
pointsize: 2.5
netblock: 1270.0.0 0
Threshold: 8, 255

Xpos: 27
Ypos:141

Color map: GBEI
wiewmode: total, trawel
transparency: 0.23
pointsize: 2.5
netalock: 127.0 .018
Threshold: 8, 255

Xpos: 27
Ypos:141

3D IFw4 Heatmap / Nominet LIK

Color map: GOBI
wiewmade: total, travel
transparency: 0.23
pointsize: 2.5
metblock: 224.0.0.0/3
Threshole: 8, 255
Mpos: 3
Ypos:192

Color map: GiOBI
viewnode: cubse, focus
transparency: 0.23
pointsize: 1.6
netblack: 151.89.0.0;16
Threshold: 4, 255
Xpos: 12
Ypos:192

3D IFv4 Heatmap / Nominet UK

Color map: CODE
viewnode: cubse, focus
transparency: 0.23
pointsize: 4.8
netblack: 151.89.0.0;16
Threstiold: 4, 255
Xpos: 27
Ypos:204

