
 1

RPKI Rsync Performance Test Update

David Mandelberg <dmandelb@bbn.com>

Thanks to Steve Kent, Andrew Chi (BBN), and
Kotikalapudi Sriram (NIST) for valuable input.

mailto:dmandelb@bbn.com

 2

Background

● Resource Public Key Infrastructure (RPKI) is designed to
use rsync to distribute files to all ISPs running BGP

● Various concerns over the performance of rsync in the RPKI
environment, e.g.:
– Can it handle all the files in a repository as it grows?

– How quickly can clients synchronize everything?

– How many clients can a server handle?

● Oleg Muravskiy and Tim Bruijnzeels (RIPE NCC) ran a
scaling experiment with 5 Mac Minis on a LAN¹
– We corroborate scaling with a realistic server and network

¹ T. Bruijnzeels, O. Muravskiy, and B. Weber, "RPKI Repository Analysis and Delta
Protocol," March 2013.
http://www.ietf.org/proceedings/86/slides/slides-86-sidr-2.pdf

 3

Recap of Presentation¹ at IETF 86

● Estimated ~290k total objects in the global RPKI with
full deployment, or ~445k with BGPSEC (there were
8,448 objects on 2013-07-22)

● With only one client and one server:
– Scaling by total number of files in a repository is roughly

linear between 100k and 700k files.
– It takes less than 10 minutes to download 700k 1458-byte

files.

● So, what happens when many simultaneous clients
download from a server?

¹ S. Kent and K. Sriram, "RPKI rsync Download Delay Modeling," March 2013.
http://www.ietf.org/proceedings/86/slides/slides-86-sidr-1.pdf

 4

Experiment

● Rsync only, no validation (this experiment's emphasis is on server performance)
● Simulated repositories:

– 400,000 files representing RPKI objects
● The previous experiment showed linear scaling between 100k and 700k (400k is in the middle and we

like round numbers)

– 1458 bytes of pseudo-random data per file
● When we downloaded from the five RIRs on 2013-01-28 at 17:15 UTC, the median size of RPKI

objects was 1458 bytes (and the mean was 1405).

● Varying number of simultaneous clients. For each measurement, all clients are
started as close to the same time as possible.

● Varying percent of files changed between the server and the clients' caches
– 25% corresponds to relying parties polling every 24 hours.

– 5% corresponds to relying parties polling every ~5 hours, assuming updates are evenly
distributed in time.

 5

Experiment

● Clients were geographically distant from the server to represent realistic network delays.
● Server

– Amazon EC2 m3.2xlarge in Tokyo (US$ 1.52/hour = US$ 13,315.20/year)

– 8 core Xeon E5-2670 at 2.60GHz

– 30 GB RAM (but we could have used less)

– Based on discussion with Chris Morrow (Google), we believe this to be a realistic model of a
medium-capacity server.

– Repository stored in RAM using Linux's ramfs (~600MB)

● Clients
– Amazon EC2 m1.medium in North Virginia

– Xeon E5-2650 CPUs at 2.00GHz, 1 core per client virtual machine

– 3.75 GB RAM

– Repository cache on instance store

● Ubuntu 12.04 64-bit, with no additional performance tuning.

 6

 7

 8
Note: The points with 50 simultaneous clients were removed due to issues on the
clients' side of the experiment.

 9

Server Resource Usage

● CPU was limiting factor for 5% and 25% of files changed
– With 5% files changed and 200 clients: 100%
– With 25% files changed and >= 75 clients: 100%
– With 100% files changed: ~80% or lower

● Server transmit capacity was limiting factor for 100% of files changed
– With 5% files changed and 200 clients: ~550Mbit/s

– With 25% files changed and >= 75 clients: ~800Mbit/s
– With 100% files changed and >= 30 clients: ~900Mbit/s

● Other Factors
– RAM: 400,000 files * 1458 bytes per file < 600MB

– Server receive capacity: minimal usage

– Disk: minimal usage (repository stored in RAM)

 10

Conclusions

● For lower percentages of change:
– CPU was the limiting factor in our setup.

– If CPU were increased to 12 or 16 cores, a 1 Gb/s network interface probably would become the
limiting factor.

● For higher percentages of change:
– Network was the limiting factor.

● Flat scaling before limiting factor reached, linear scaling after, with slopes that are
operationally tractable

● RIRs or other operators of large repositories can use multiple servers (preferably
geographically distributed) with DNS-based load balancing to reduce the number of
simultaneous clients using each server.
– Cloud computing might provide this with minimal up-front costs.

● Servers with dual network interfaces may be useful for mixed workloads when most
clients have small changes to download and a few clients need to download everything.

● A reasonable server should be able to saturate a 1Gbit link.

 11

Example Context For All These Numbers
(i.e., more numbers)

● 43k ASes¹ polling the RPKI
● 5 hour polling interval, uniformly distributed
● 140 seconds to synchronize everything (per-client, as seen by the

server, for the flat portions of the curves)
● DNS round-robin of 5 servers per repository
● 43k * (140s / 5hr) = 334 simultaneous clients synchronizing with a

repository
● 334 clients / 5 servers = 67 simultaneous clients per server
● 5 hour polling interval corresponds to 5% of files changed², for which a

single server can easily handle 189 simultaneous clients.
● 67 < 189

¹ S. Kent and K. Sriram, "RPKI rsync Download Delay Modeling," March 2013.
http://www.ietf.org/proceedings/86/slides/slides-86-sidr-1.pdf

² Calculated from numbers in [¹].

http://www.ietf.org/proceedings/86/slides/slides-86-sidr-1.pdf

 12

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

