

RDL: A programmatic approach
to generating router configurations

Per Gregers Bilse

Benno Overeinder

RDL: The background

● ENGRIT: Extensible Next Generation Routing Information Toolset

● Improve Internet routing security and stability

● Multi-pronged approach, RDL is one aspect

● Other aspects will focus on authentication, etc

● NLnetLabs has done much work with DNS

RDL: The rationale

● Global turnover $dozens of millions per hour

● Even small problems can be very costly

● Router configuration is inherently low level

● Large number of only moderately related detail

● Limited or no verification tools

● Limited scope for inter-ISP routing management

RDL: The idea

● A high level Routing Documentation Language

● Dual purpose:

● 1) Architecture independent generation of BGP config:

– RDL->Cisco, RDL->Juniper, RDL->BIRD

– C->68k, C->x86_64, C->ARM

● 2) Description and publication of routing policies:

– Enable automated verification and proofing

– Improve exchange of information between peers

RDL: Not RPSL NG NG

● RDL intended to reuse parts of RPSL:

– Some objects

– Publication/repository means, where feasible

● But, more importantly:

– RDL to describe BGP topology

– RDL to cover both iBGP and eBGP peerings

– RDL to fully qualify and identify routing policies

RDL: What is a policy?

● Much confusion between Policy and Enforcement
Action

● A policy is Thieves will be prosecuted

● An enforcement action is Arrest Nosey Parker

● Existing tools and approaches focus on enforcement
actions

● Quickly degenerate into route filter mechanics

RDL: Policies in 3D

● A routing policy as seen by RDL has three dimensions
to it:

– Where it applies: topological location

– When it applies: NLRI attributes

– What to do: filtering and attribute manipulation

● Think of it as similar to a piece of legislation, eg speed
limits: Where, When, What

● These three aspects jointly describe a given policy in
its entirety

RDL: A policy example

● Policy: My AS will not announce bogons

● RDL's 3D approach:

– Where: all peerings with foreign ASs

– When: prefix is in list of bogons

– What: block it

● RDL's BGP topology description is the key to
specifying the Where of a policy

● the Where is statically analysed and applied when
generating configurations

● The When and the What are done by the routers

RDL: The language

● Designed specifically for the purpose of
describing BGP topologies simply and
intuitively

● Free form curly brace, recursive, and
concatenative syntax, allowing quick and easy
specification of objects and their location

● Borrows inadvertently and disrespectfully from
several unusual languages

● Fully dynamically typed and declaration free

RDL: BGP topology

● RDL describes BGP topology by way of three
objects:
– Zones – may contain other zones, and routers

– Routers – may contain one or more eBGP peers

– Peers

● Structure similar to file system directories
● Each object has a number of attributes
● Attributes may be inherited from lexical scope

RDL: Topology example
hibernia = new(zone) . {

 asn = 5580;

 EU = new(zone) . {

 NL = new(zone) . {

 ams1 = new(router) . {

 address = 134.222.1.1;

 ripe = new(peer) . { 1.2.3.4, 3333 };

 };

 };

 };

 US = new(zone) . { };

 APAC = new(zone) . { ... };

};

RDL: What's in a zone

● Zones are containers for similar policies
– often significant geographical correlation

– should be chosen to reflect the reality of your network, not
the other way around (your network is the ground, the zone
map is the map)

– you decide what your zone map should be, it is there to help
you

– again: RDL is all about BGP topology

– the zone map identifies reference points for policies

RDL: Policy example

● Policy descriptions follow the topology format

nobogons = new(policy) . {

 where = export peer.asn != peer.remote.asn;

 when = nlri.prefix & bogons;

 what = reject;

};

bogons = { 0.0.0.0/8^+, 10.0.0.0/8^+, 100.64.0.0/10^+, ... };

● Policy syntax is experimental/undecided

● Probably a good idea to stick to general syntax of RDL

RDL: Unusual Example I
hibernia = new(zone) . {

 asn = 5580;

 RR1 = new(router) . { 134.222.12.1, RR };

 EU = new(zone) . {

 ibgp = { RR1, localmesh };

 NL = new(zone) . {

 ams1 = new(router) . { 134.222.1.1 } . { ... };

 };

 };

 US = new(zone) . { ibgp = { RR1, localmesh }; ... };

};

RDL: Unusual Example II

● Policy: de-prioritise all EU routes in US
● RDL to the rescue:

EUexport = new(policy) . {

 where = export peer.zone <= EU && peer.remote.zone <= US;

 when = ;

 what = localpreference = 90;

};

● Because RR1 is a route reflector it is transparent

RDL: Nirvana

RDL is all about not configuring routers, but
programming the AS.

ENGRIT + admin: benno@nlnetlabs.nl

RDL: pgb@bgpinnovations.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

