DNS Privacy -Implementation and Deployment Status

Sara Dickinson Sinodun Allison Mankin Salesforce

IEPG@IETF96

Berlin, July 2016

DNS Privacy - Background

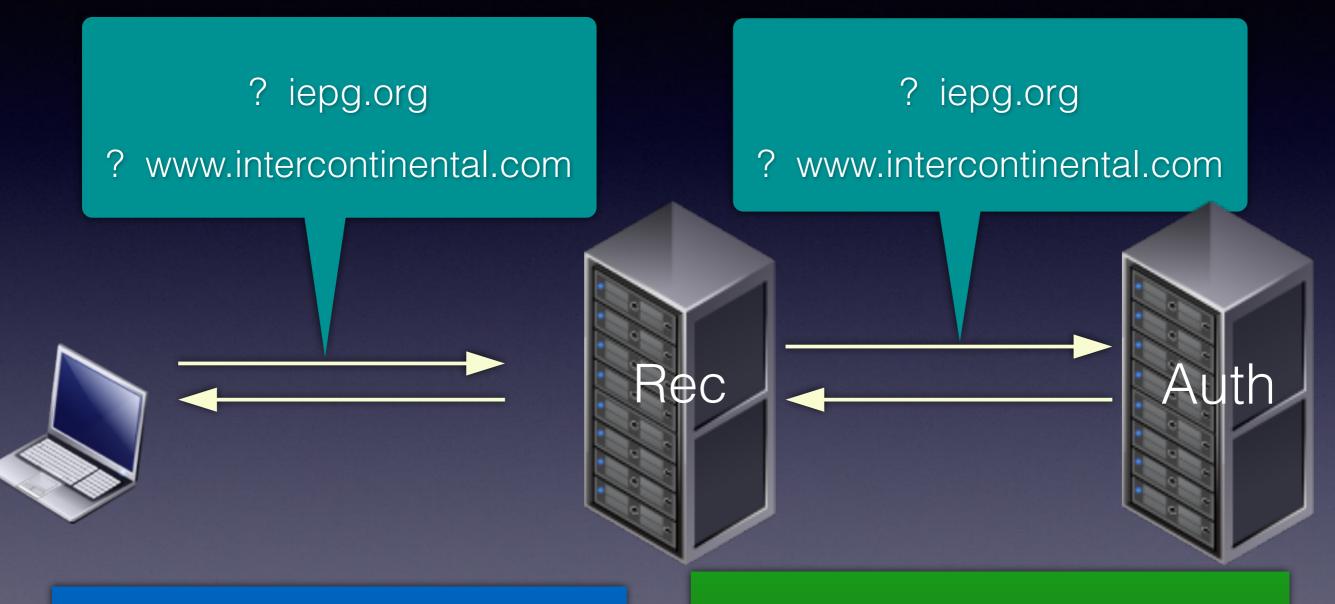
- RFC 7558 "Pervasive Monitoring is an Attack"
- **DPRIVE WG** (formed in 2014)

Current Charter: Stub to Recursive ONLY

- RFC 7626: DNS Privacy Considerations
- **RFC 7858:** Specification for DNS over TLS

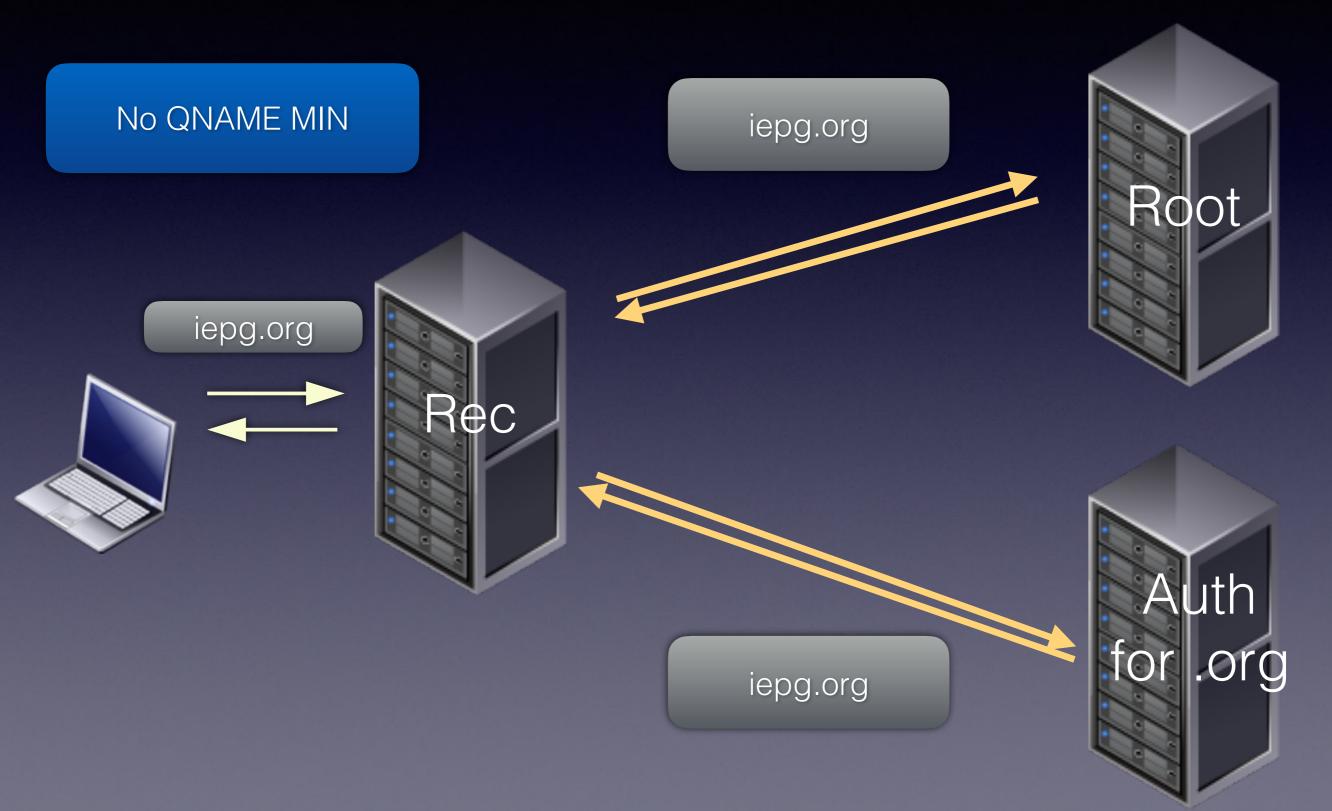
Port 853 Allocated

- **RFC 7816:** QNAME Minimisation
 - Recursive (Rec) to Authoritative (Auth)

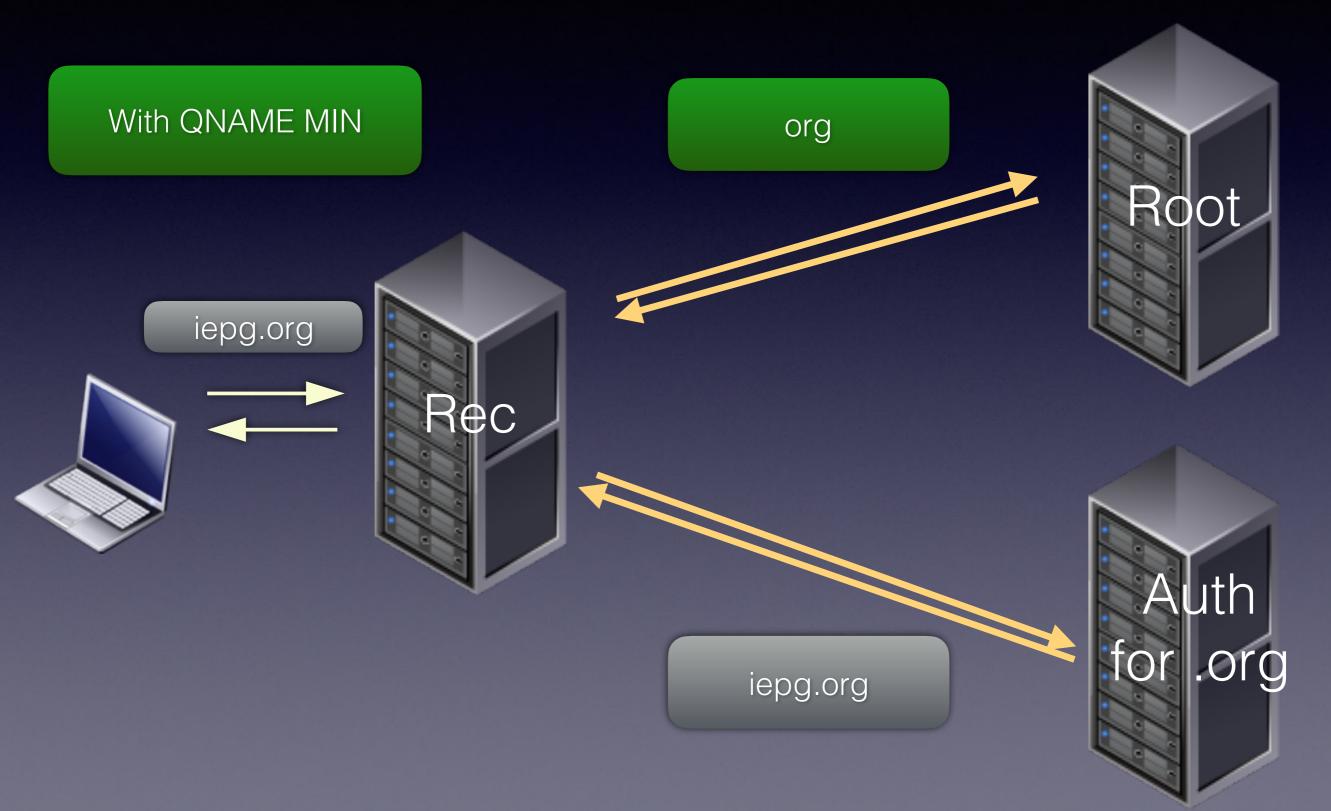

RFC 7626 -DNS Privacy Considerations

Worth a read - many operational issues here!

Expert coverage of risks throughout DNS ecosystem


Rebuts "alleged public nature of DNS data"

DNS Disclosure Example



Stub Query => Rec user src address Client Subnet option (RFC7871) contains source subnet in DNS query

DNS Disclosure Example

DNS Disclosure Example

Risk Mitigation Matrix

	In-Flight		At Rest		
Risk	Stub => Rec	Rec => Auth	At Recursive	At Authoritative	
Monitoring (Passive/Active)	Encryption (DNS-over-TLS)				
		QNAME Minimization			
Other Disclosure Risks e.g. Data breaches			Data Best Practices (Policies) e.g. De-identification		

Operational Challenges

Considerations for Operators

- TLS operation is a new challenge for DNS recursive operators
- Note well: historic DNS servers have very basic TCP capabilities
 - Newer software is adding more sophistication and modern TCP features
- In addition, TLS is evolving...

TCP/TLS Scalability

- Historic measurements used 1-shot TCP, gave results significantly worse than UDP and under reported capacity
- New DNS-over-TCP/TLS benchmarking tools are on the way (patch to dnsperf).

Implementation Status

Recursive implementations

Features		Recursive resolver			
		Unbound	BIND	Knot Res	
TCP/TLS Features	TCP fast open				
	Process pipelined queries				
	Provide OOOR				
	EDNS0 Keepalive				
TLS Features	TLS on port 853				
	Provide server certificate				
	EDNS0 Padding				
Rec => Auth	QNAME Minimisation				

Dark Green:Latest stable release supports thisLight Green:Patch availableYellow:Patch/work in progress, or requires building a patched dependencyGrey:Not applicable or not yet planned

Stub implementations

Features			Stub			
		ldns	digit	getdns	BIND	
TCP/TLS Features	TCP fast open					
	Connection reuse					
	Pipelining of queries					
	Process OOOR					
	EDNS0 Keepalive					
TLS Features	TLS on port 853					
	Authentication of serv	ver				
	EDNS0 Padding					
	 Dark Green: Latest stable release supports this Light Green: Patch available Yellow: Patch/work in progress, or requires building a patched dependancy Grey: Not applicable or not yet planned 					

* getdns uses libunbound in recursive mode

Deployment Status

Test Servers

• NLnet Labs have a test server today. Details:

https://portal.sinodun.com/wiki/display/TDNS/DNS-over-TLS+test+servers

• OARC also offering trial servers (members only at the moment).

- Modern async DNSSEC enabled API
 - https://getdnsapi.net
- Stub mode is feature rich for DNS Privacy
 - Alpha (v1.1.0a1) of a daemon mode try it out:

https://portal.sinodun.com/wiki/display/TDNS/DNS+Privacy+daemon

- Challenge: Adoption in OS
 - nss_switch module?

Test Servers

- RIPE DNS WG: Presentation and discussion of offering experimental DNS Privacy Service
- RIPE are planning to co-ordinating a community effort
 - Research various solutions and issues
 - Output will be operational guidance

Summary

- Good reasons to consider DNS Privacy
- Active work on DNS Privacy standards and implementation
- Can test DNS Privacy today using getdns & current test servers
- More DNS Privacy services on the way...

Thank you!

Any Questions?

sara@sinodun.com amankin@salesforce.com

Additional Slides

DNS-over-TLS needs TCP !

- DNS-over-TCP... historically used only as a fallback transport (TC=1 ➡ 'one-shot' TCP, Zone transfer)
- <u>RFC7766</u> (2016) a bis of RFC5699
 - TCP a **requirement** for DNS implementations
 - Performance on par with UDP, security/robustness
- RFC7828 edns0-tcp-keepalive
 - Timeouts for persistent TCP connections

TCP/TLS Performance

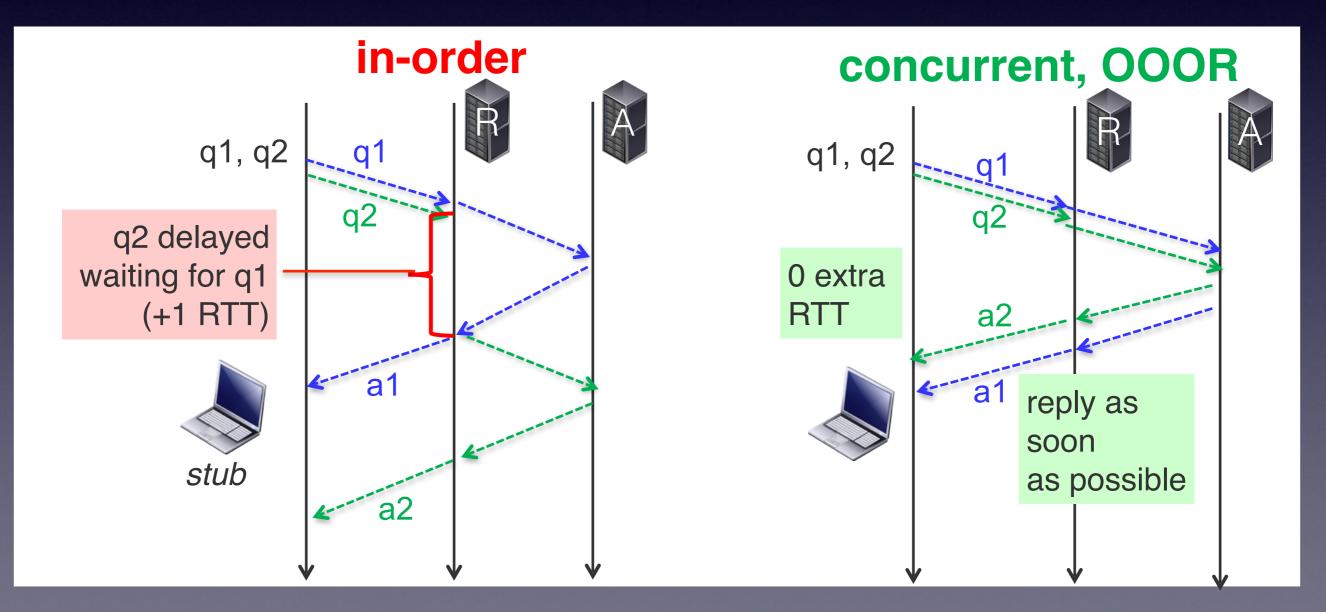
Goals:

1. Optimise TCP/TLS set up & resumption

• TCP FastOpen, TLS resumption, [TLS 1.3]

2. Amortise cost of TCP/TLS setup

 Keep connection open, send many messages efficiently


3. Server must handle many connections robustly

• Learn from HTTP servers

Performance (RFC7766)

Client - pipeline requests and handle out-of-order response

Server - concurrent processing of requests sending of out of order responses

Alternative server side solutions

- dnsdist would be great... but no support yet
- Pure TLS load balancer
 - NGINX
 - BIND article on using stunnel (add link)

Disadvantages

- server must still have full TCP capabilities
- pass through of edn0-tcp-keepalive option
- DNS specific access control is missing

TLS BCP

 UTA (Using TLS in Applications) WG produced <u>RFC7525</u> this year - "BCP for TLS and DTLS" DNS-over-TLS is relatively 'green-field'

- Key recommendations Protocol versions:
 - TLS v1.2 MUST be supported and preferred
- Recommended Cipher Suites (4 of ~100):
 - **AEAD mode** Forward secrecy for key exchange
 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Examples

STUB MODE

1.0.0b1

1.5.9

Scenario 1:

Strict TLS

- Configuration:
 - Hostname verification required
 - Correct hostname for Unbound resolver
 - TLS as only transport
- RESULT:

TLS used (cert & hostname verified)

Scenario 2: Strict TLS

- Configuration:
 - Hostname verification required (Default)
 - No or incorrect hostname
 - TLS as only transport
- RESULT:
 - Query fails

Scenario 3:

Opportunistic TLS

- Configuration:
 - Hostname verification optional
 - Valid, none or incorrect hostname
 - TLS as only transport
- RESULT:

TLS used (hostname verification tried but fails)

Scenario 4:

Opportunistic TLS

- Configuration:
 - Hostname verification required (default)
 - Valid, none or incorrect hostname
 - TLS with fallback to TCP
- RESULT:

TLS used (hostname verification tried but fails)